
Frameworks Derived from Business Process

Patterns

Oscar Barros and Samuel Varas

Industrial Engineering Department
University of Chile

República 701 - Santiago - Chile

Abstract

A novel approach for the design of Business Objects Frameworks that encapsulates
high level business knowledge and logic is presented. These frameworks are derived
from formal and explicit Business Process Patterns that include best practices for
businesses in a given application domain. A pattern and a framework derived from
it can be applied to improve a process for a given business in the domain and
to develop an application to support such process. This provides a very flexible
way, based on reusable components, to develop solutions and software for complex
business decisions, which is an alternative to packaged products. The approach is
exemplified by using a specific application domain and applied to a real case in the
domain.

Key words: Business Patterns, Framework, Software Development

1 Introduction

Several authors (Bohrer et al., 1998; Cline and Girou, 2000; D’Sousa and
Nills, 1999; Fan et al., 2000) have established the need of Business Objects
that represent things and behavior in a business domain and provide a solution
to generalized, recurring problems in it. Such Business Objects (BO) would
be organized in a framework (Cline and Girou, 2000; D’Sousa and Nills, 1999;
Fowler, 1996), which is not necessarily executable, that can be adapted and
specialized to solve particular business problems. The value of a Business
Objects Framework (BOF) depends on the relevance -in terms of impact on

Email address: {obarros, svaras}@dii.uchile.cl (Oscar Barros and Samuel
Varas).

Preprint submitted to Elsevier Science 23 January 2004

business results- of the business situation its represents, the quality of the
support it gives to such situation and the effort needed to make it work.

Examples of specific well known attempts to implement ideas above are as
follows:

i) The San Francisco Project (Bohrer et al., 1998) that, based on requirements
derived for a vertical domain defined by several IBM’s business partners,
developed an extendable component-based development platform. This in-
cludes basic business logic for common business functions -e.g. financial
management, order management and the like- to be enhanced and extended
by developers; Common Business Objects (CBO) that perform processing
functions used in many applications domains; and a Foundation, which pro-
vides an infrastructure that is used to build the business logic and the CBO.
These components were commercially available for a few years and are no
longer marketed by IBM.

ii) Fowler’s patterns (Fowler, 1996), that are published frameworks in domains
such as accounting, billing and payroll. They identify object structures and
associated logic that synthesize generalized solution in such domains. The
logic considered is mostly information processing logic and not true decision
oriented business logic.

iii) The Catalysis approach (D’Sousa and Nills, 1999), which proposes frame-
works similar to Fowler’s, but for a wider range of domains. It attempts to
cover some business decision logic, but at a basic naive level.

All above approaches share a common weakness, which is that they do not start
with an explicit business process domain model that defines with precision the
high level decision logic needed to run a business according to best practices.

In trying to overcome above limitation, we have developed a new approach to
design and produce BOF, which is novel in that:

i) It is based on formal models of generalized business processes for a given
domain -called Business Process Patterns (BPP)- which include high level
logic derived from best practices that assure a well run business (Barros,
2000).

ii) It is systemic since business logic for each activity of a process -e.g. mar-
keting, selling, order processing, producing and distributing - is consistent
and integrated with the whole.

iii) It can be naturally connected with UML modelling of BO.
iv) BO include business logic that offers alternatives and incremental levels of

complexity and sophistication for supporting a business activity.
v) It is open in that BPP and BOF are published for wide use in a web site

(www.obarros.cl, 2003).

In summary, the most distinctive characteristic of our approach is that it

2

is closer to the most important decisions of a business than any previously
proposed framework and provides a very flexible, reusable component-based
approach for supporting such decisions.

It has been experimentally tested in real-life situations in Chile.

2 Business Process Patterns

Business Process Patterns (BPP) are models of how a business in a given
domain should be run, according to the best practices known (Barros, 2000).
Hence they are based on empirical knowledge of how activities of a process
in the best companies of a given domain are performed. Such knowledge can
be obtained from books (Hieleber et al., 1998), web sites (www.bwpccoe.org,
2003; www.ebusinessforum.com, 2003; www.siebel.com/bestpractices, 2003)
and direct observation of firms. Our patterns have benefited from the knowl-
edge derived by hundred of cases in which processes of many different compa-
nies have been modelled, analyzed and redesigned 1 .

We have found that beyond specific best practices for a given domain -usually
expressed in the form of an specific business logic-, BPP share a common
structure of activities and flows. Thus, products or services provision pro-
cesses -such as manufactured goods, health services, justice services, financial
services, etc.- share such a common structure. A first level of detail of such
a process structure for a very large domain is shown in Figure 1, where an
activity-based modelling scheme that uses IDEF0 is presented (Barros, 2000).
This pattern is a more precise version of the value chain of a firm (Porter,
1986). Such BPP establishes what activities and relationships, by means of
information flows, in the model should exist in practice in order that the busi-
ness it realizes is well run. One activity in the model is of particular interest,
since if represents the centralized IT-based storage of data needed to support
the process, which is called State Status. Thus the BPP assumes that every
transaction that occurs in the activities other that State Status is informed to
this, and state of relevant entities is updated and fed back to former activities,
so that they can act upon such knowledge.

Detail of flows -by means of attributes definition- and actions of activities,
described by business logic, is given in the BPP dictionary(www.obarros.cl,
2003).

Further detail of any activity can be given by decomposition of it, following
the IDEF0 scheme. For example, Figure 2 shows the detail of activity 3. At

1 Representative cases are published in the web site www.obarros.cl (in Spanish)

3

Fig. 1. Business Process Pattern for value chain

this level of detail our domain is still as general as the first one.

If we want to give further detail, we have to be more specific about the domain,
so that we can define the business logic and flows with precision. In order to
show how to do this and use the same case for the rest of the document, we
synthesize our experience of many real cases in the following domain definition
for the activity Production planning and control of Figure 2 (Barros, 1995).

We assume we use physical installations to produce a product or give a service,
where there is a physical entity which is the final product or the one that
receives the service. This domain represents situations such as manufacturing,
health services, justice services, and telecommunication services.

Under theses assumptions, we decompose Production planning and control as
shown in Figure 3.

Finally, to give more details of activity Scheduling of Figure 3, we reduce the
domain to situations in which tasks are processed on physical facilities in lots
-predefined by Planning and known by means of Production plan. We also as-
sume that when changing from one lot to another a set-up cost, which depends
on the pair involved, is incurred. Such set-up costs are assumed to be known
for all pairs. This case is representative of some situations in manufacturing
and other business, such as paper mill machine processing of lots, where color
of paper of a preceding lot affect the set-up of the following; printing shops;
processing of patients in surgical installations -because of cleaning and equip-
ment set-up between operations-; processing of batches in food industry lines;

4

Fig. 2. Detail of Production & delivery management

Fig. 3. Detail of Production planning and control

and assignment to technicians and routing of telephone repair calls.

At this specific domain we can be very precise about the business logic that
produces an optimal or near optimal solution - in terms of cost minimization
- which means a best practice. Business logic, which guides the action of an

5

activity, determines the exact information flows that are supplied and that are
produced. We will show how such logic is specified in the next section.

We have given a third level of detail of just one activity of a given domain. In
a real-life situation, where a BPP is to be used to redesign a whole process,
all the lowest level activities of it should be detailed, which we do not do here,
because we are just presenting the way our approach works. Also all the logic
for the different activities should be consistent, since they generate the flows
that allow the interaction among themselves, as shown in Figures 1, 2 and 3.
Thus, for example, the logic for producing Production plan in Figure 3 should
the right one in terms of the definition of lots needed by Scheduling in the
same figure, which is known by means of State Status.

Of course, BPP can be developed for any business domain of interest, which,
besides the cases presented, may include new product development, business
planning, human resource management, financial resource management, etc.

3 Business Logic Specification

Our aim is to give generalized business logic for an specific domain. In the
case we are presenting, we have defined our domain, as outlined in previous
section, as a situation -representative of many real-life experiences - which can
be formalized as follows:

Consider the case where n tasks must be processed on at most m facilities
following a defined route r. Each task is characterized by its type, which is
a group of similar tasks having the same lead, processing and setup times
at each facility. Each facility is characterized by its capacity, given by the
number of similar and parallel facilities and their technical characteristics.
Finally, a route is defined by a sequence of facilities which participate in
the processing of a given task or group of them. Figure 4 shows the gen-
eral setting of our characterization, where there are 3 tasks (t1, t2, t3), 6 fa-
cilities (F1, F2, F3, F4, F5, F6), 3 routes, where for example route for task t1 is
(F1, F2, F3, F6), t2 is (F1, F4, F5, F6), and t3 is (F4, F3), and facility 2 has two
parallel facilities.

Then, the goal is to schedule the n tasks, processing them in the order required
by their routes, such that all or at least most of the tasks are completed before
of their lead times, minimizing time or cost, or maximizing facilities utilization.
It is well known that the standard tasks scheduling problem is NP-hard (Garey
and Johnson, 1979; Garey et al., 1976), because it is a strong combinatorial
problem. However, there are some cases where it is possible to have good
solutions in polynomial time, which we specify below.

6

F1

F4

F3

F5

F2

F6
t1

t2

t3

Fig. 4. Scheduling Problem characterization

To further formalize our scheduling problem, we consider the following nota-
tion:

• m represents the number of different types of facilities or machines, where
we consider that there are mj equivalent parallel facilities of jth type.

• n is the number of distinct tasks types, where nij is the number of tasks
type ith waiting for being processed at facility type j. Then, nj = n1j+
. . . + nNj is the number of tasks to be scheduled at facility type j.

• Pik is the processing time of task i at facility k.
• Sijk is the setup time if task type i is processed immediately before task

type j at facility k. Therefore, matrix Sj represents the setup time matrix
for the jth facility.

• TW1i is earliest time to begin processing of task i.
• TW2i is the latest time to finish of processing task i. This is also known as

due or lead time.

The scheduling problem of n tasks at m facilities is an order ~π = (~π1, ~π2,
. . . , ~πm) of tasks to be processed at each facility. In particular, at any specific
facility k, the processing order ~πk is a nk-tuple (π1k, π2k, . . . , πnkk), where πik

is the task that will be processed in order ith at facility k.

Then, for initial waiting tasks distribution ~n0 and m facilities, the following
heuristic provide a scheduling logic for our problem.

7

Heuristic Schedule(~n0, m)
πj = 0, j = 1, . . . ,m
~n = ~n0

SelectSet(m,~n, Φ)
GetTask(Φ, ~π)
if (m > 1) then

ImproveSchedule(~π)

where

• Routine SelectSet() selects a subset of tasks for every facility, where the
result is given in the m-tuple (Φ1, Φ2, . . . , Φm) of subsets of Φ.

• Routine GetTask() selects a sequence πj for the set of tasks Φj of each
facility j, 1 ≤ j ≤ m; its implementation will depend on the specific case.

• Routine ImproveSchedule() improves the current schedule π for all facili-
ties.

This heuristic synthesizes many proposals of algorithms and heuristics for
solution of problems in the domain (Beck et al., June 9-13, 2003; Johnson,
1954; Thangiah et al., 1996).

In what follows we provide solutions (business logic) for both SelectSet() and
GetTask() routines. Logic for ImproveSchedule() is provides when relevant.
These solutions will depend on the characteristics of facilities, set-up times and
lead times; some of them are proved optimum and the others are heuristics.
We will concentrate on simpler cases in order to avoid very complex logic.
However, these cases are useful for solving relevant real life cases, as we will
show in Section 5.

First, we structure the domain by defining a hierarchy of cases, going from
simple (at the top) to more complex (at bottom), as shown in Figure 5. This is
also an inheritance tree, since an algorithm or heuristics on a given case(node)
of the tree is applicable to cases on lower nodes of such branch. This can also
be thought as an specification of generalized business logic with alternative
and incremental options, as proposed in (Barros, 2002). Thus a node with
two branches represents alternative solutions (business logic specified as an
algorithm or a heuristic) to the scheduling activity for different situations. A
node in a branch that follows another one represents a more complex case that
uses an algorithm or heuristic from the simpler one as part of the solution
for that node. This characteristic will be exploited in the next section to
define frameworks with specialization hierarchies and incremental methods.
The hierarchy is simplified, for presentation purposes, since it does not consider
all the possible cases for the situation at hand.

Next, we give real-life examples of situations for each node in the tree in Figure

8

Scheduling
problem

One facility and lead
time, no setup facility (1)

Two facilities and lead
time, no setup time (1.1)

Three or more facilities in
series and lead time,
no setup time (1.1.1)

One facility and
setup time (2)

Two or more
parallel facilities and

setup time (2.1)

One facility with setup
and lead time (3)

Two or more
parallel facilities with setup

and lead time (3.1)

Fig. 5. Scheduling Problem Structure

5 -to show the practical relevance of the cases- and detail the business logic
for each of them.

1. One facility; tasks with lead times, but no set-up times. This case corre-
sponds to situations with simple machines that require little or no set-up
time, or complex installations where set-up times have been eliminated to
allow for just-in-time production; e.g. a sewing machine in a textile shop. In
this case there is not need for SelectSet(). A heuristic for GetTask() that
tries to minimize average completion time is:

GetTask1(Φ, π)
q = argminj{α Pjk + β TW2j | j ∈ Φ}
π = insert(q, ∅, 0)
Φ = Φ\{q}
while(Φ 6= ∅)
{

q = argminj{α Pjk + β Tardiness(π̂) | j ∈ Φ ∧
π̂ = insert(j, π, |π|))}

π = insert(q, π, |π|)
Φ = Φ\{q}

}
where α and β are real nonnegative parameters, such that α + β = 1,
insert(j, π, i) return a new schedule with element j inserted in schedule π
just after place i, and function Tardiness(π) calculates the total amount
of tardiness time of schedule π. This function is given by the following
expression:

9

Tardiness(π)
t = 0
for i = 1 to |π|

t = t + min{0; Time(π, i)− TW2π(i)}
return t

Function Time(π, k) is a function to calculate the execution time of sched-
ule π until task k, given by the following expression:

Time(π, k)
t = Pπ(1)

for i = 2 to k
t = Pπ(i) + max{t; TW1π(i)}

return t
This heuristic is an adaptation of the one proposed in (Thangiah et al.,

1996).
Function GetTask1() provides the optimal solution with respect to mini-

mizing the makespan, under no earliest and lead times (i.e., TW1i = TW2i =
0, ∀i) and one or two facilities (i.e., m ≤ 2). In this case, GetTask() corre-
spond to the Johnson’s algorithm (Johnson, 1954).

1.1. Two machines in series. In this case tasks should be sequenced on both
machines. An example of this is the sequencing of cutting an sewing in
a textile shop. Heuristics for SelectSet() and GetTask(), adapted from
(Johnson, 1954), in this case are:

SelectSet11(m,~n, Φ)
Φ1 = {i \ P1i ≤ P2i}
Φ2 = {j \ P1j > P2j}
Φ = {Φ1, Φ2}

and
GetTask11(Φ, π)

GetTask1(Φ1, π1)
GetTask1(Φ2, π2)
π = π1

⋃
π−1

2

where π−1 means the inverse order of π.
1.1.1. Same as 1.1, but with more than two machines in series. An example

of this is a textile shop with a group of machines that perform given
operations -cutting, sewing, finishing, etc.- where a given lot of goods
goes through several machines. In this case strategy is grouping first
k facilities at the initial virtual facility (FC1) and the other m−k at
the second virtual facility (FC2). SelectSet() is as follows (Johnson,
1954):

SelectSet111(m,~n, Φ)
FC1 = {1, . . . , k}
FC2 = {k + 1, . . . ,m}
P1i =

∑
j∈FC1

Pij,∀ i
P2i =

∑
j∈FC2

Pij,∀ i
SelectSet11(2, ~n, Φ)

10

and GetTask() :
GetTask111(Φ, π)

GetTask11(Φ, π)
This procedure schedules a set of tasks over a line of m facilities and

there is no guarantee about the optimally, but we provide a version of
ImproveSchedule() to seek a good solution. The ImproveSchedule()
logic analyzes all possible subset of facilities and it is as follows:

ImproveSchedule()
πmin = ∅
min = ∞
for k = 1 to m− 1
{

SelectSet111(m,~n, Φ)
GetTask11(Φ, π)
if (Time(π, |π|) < min)

min = Time(π, |π|)
πmin = π

}
}

2. One facility with set-up time, but no lead time. This is a case where set-
up is unavoidable and significant (several hours); lead time has been taken
care of in production planning or it is not relevant. Examples of this case
are machine scheduling in a paper mill, where each machine is scheduled
independently for certain papers and lots to be scheduled are part of a
production plan for stock replenishment, which has already consider the
timing (www.obarros.cl, 2003); and printing machine schedule in the case
where there are not desired completion times. We consider that there exists
a set-up time, independently of the number of tasks of the same type to be
processed, but depending on the previous task type processed.

Solution is given by a greedy heuristic (Johnson, 1954), which tries to
minimize the sum of the set-up and processing times for the sequence of all
tasks, where GetTask(Φ, π) is as follows:

GetTask2(Φ, π)
q = argmini{minj{Sijk + Pjk| i, j ∈ Φ}}
π = insert(q, ∅, 0)
Φ = Φ\{q}
while (Φ 6= ∅)
{

q = argminj{Sqjk + Pjk| j ∈ Φ}
π = insert(q, π, |π|)
Φ = Φ\{q}

}
2.1. Same as (2), but with several parallel facilities. An example of this is a

group of telephone repairmen, which are assigned repair jobs each morning
from a list of pending jobs. Set-up time between repair jobs is the travelling

11

time between repair locations. Each repairmen has to be assigned a set of
jobs and a sequence (schedule) of repairs (www.obarros.cl, 2003). We define
Ω as the set of facilities; ω a function to order those facilities; and Ck is the
maximum allowed capacity for facility k and ck is the current used capacity
at facility k. Then, the heuristic solution for this case is given by:

SelectSet21(m,~n, Φ)
Θ = {1, . . . , n}
τk = 1

n(n−1)

∑n
i,j(Sijk + Pjk), ∀k

while (Θ 6= ∅)
{

Ω = {1, . . . ,m}
while(Ω 6= ∅ ∧Θ 6= ∅)
{

k = arg mino{ω(o) | o ∈ Ω}
Ck = 0
Ω = Ω\{k}
for i = 1 to |Θ|

if(ck + τk ≤ Ck ∧ Γ(Θi, k)) then
Φk = Φk ∪ {Θi}
ck = ck + τk

Θ = Θ\{Θi}
}
if(Θ 6= ∅) then

Ck = Ck + 1
m

∑m
j=1 τj, ∀k

}
where Γ is a belonging function, which is true if task i can be processed at
facility k and false otherwise. The GetTask() routine is given by:

GetTask21(Φ, π)
π = ∅
for i = 1 to m
{

GetTask2(Φi, πi)
π = π ∪ πi

}
3 One facility whith setup and lead time. This is the typical case of work

to order with given completion dates. We consider that each task has two
times: TW1i and TW2i. Examples of this are a printing shop that accepts
orders with given due dates and a paper mill that produces orders of special
papers with promised delivery dates. Solution is:

12

GetTask3(Φ, π)
q = arg minj{mini{α (Sijk + Pjk) + β TW2j | i, j ∈ Φ}}
π = insert(q, ∅, 0)
Φ = Φ\{q}
while (Φ 6= ∅)
{

tmin = ∞; Imin = −1; Jmin = −1
for i = 1 to |π|

for j = 1 to |Φ|
π̂ = insert(j, π, i)
if (α Time(π̂, |π̂|) + β Tardiness(π̂) < tmin)

tmin = α Time(π̂, |π̂|) + β Tardiness(π̂)
Imin = i; Jmin = j

π = insert(Jmin, π, Imin)
Φ = Φ\{Jmin}

}

This heuristic, modified from (Thangiah et al., 1996), which tries to min-
imize the overall execution and tardiness time, first selects a task with the
largest set-up time with respect to the other tasks and the lowest due time.
Then, all unassigned tasks are checked at any possible place of π, and that
which minimizes the total execution and tardiness is inserted at such a place.
This procedure is executed until there are no unassigned tasks. If there is
no lead time violation, the heuristic tries to minimize the total set-up and
execution time.

In this case function Time(π, k) is modified by including the set-up time
into its result, and it is given by the following expression.

Time(π, k)
t = Pπ(1)

for i = 2 to k
t = Pπ(i) + max{t + Sπ(i−1)π(i); TW1π(i)}

return t
3.1. Same as (3) with several machines in parallel. We also consider here only

the parallel case for simplification. An example of this case is the schedul-
ing of surgical operations on a set of facilities (www.obarros.cl, 2003).
Then, as in case (2.1), the solution is:

13

SelectSet31(m,~n, Φ)
Θ = {1, . . . , n}
τk = 1

n(n−1)

∑n
i,j(Sijk + Pjk), ∀k

while (Θ 6= ∅)
{

Ω = {1, . . . ,m}
while(Ω 6= ∅ ∧Θ 6= ∅)
{

k = arg mino{ω(o) | o ∈ Ω}
Ck = 0
Ω = Ω\{k}
for i = 1 to |Θ|

if(ck + τk ≤ Ck ∧ Γ(Θi, k)) then
Φk = Φk ∪ {Θi}
ck = ck + τk

Θ = Θ\{Θi}
}
if(Θ 6= ∅) then

Ck = Ck + 1
m

∑m
j=1 τj, ∀k

}
Once again, Γ is a belonging function for each task; it could be a machine

specialization, geographical location, or any other possible assignment cri-
terion.

Then, the function to schedule each task into an specific facility is given
by the following routine.

GetTask31(Φ, π)
π = ∅
for i = 1 to m
{

GetTask3(Φi, πi)
π = π ∪ πi

}

What we have presented can also be considered as a pattern that synthesizes
and structures knowledge about the solution of very diverse situations in the
specified domain, which can be reused by specializing it to specific cases.
In the next section we formalize this idea by converting this pattern into a
software framework.

4 From Business Process Patterns to Frameworks

From the BPP and business logic of the previous sections, we can derive BOF
with BO that incorporate the knowledge about the solution of a relevant prob-

14

lem in the given domain. This BOF has as a purpose to provide a generalized
solution to the problem that can be reused to develop an object-based software
application for any particular real-life situation in the domain.

The mapping from BPP and business logic to a BOF, as proposed in (Barros,
2002), is as follows:

i) The structure of the business logic of the domain gives a first cut definition
of the BO classes that encapsulate the algorithms or heuristics that solve
the problem for different cases in the domain. This structure contains,
in general, alternative and incremental solutions to different cases in the
domain, as shown in Figure 5, for the scheduling problem.

ii) Structure of the BO can then be modelled using UML class diagrams,
and operations or methods for classes defined according to business logic.

iii) Data needed to execute operations can then be derived from the param-
eters included in the business logic.

iv) Data can then be structured into data classes that interact with BO in
(ii). A complete class diagram with BO and data classes can then be
modelled using UML.

We follow steps above for the scheduling problem.

The structure of the business logic in Figure 5 leads us directly into the
BO structure of Figure 6, where we also show the operations for each class.
Such structure, which is an specialization one, shows that there are meth-
ods - HueristicSchedule, SelectSet, GetTask, and ImproveSchedule - which are
used by all specialization classes. Then the three branches starting a the class
Scheduler, define three alternative cases, one with lead time, another with
setup time, and one with both. Each branch has a method which is an spe-
cialization of GetTask - GetTask1(), GetTask2() and GetTask3 - which is
inherited by cases immediately below in such branch. Same is true for other
branches below this one. All these methods have been specified in the business
logic of Section 3.

Derivation of data needed is direct from the algorithms and heuristics of the
business logic. Thus task data -number, type, lead time- and set-up data is
necessary for the logic. Using well known principles of object oriented design
(Pree, 1994) we come out with the class model of Figure 7, where we have
integrated it with the BO model. Also we have made same design options,
assuming specific implementation technology, separating data and logic in the
idea of a web application (Conallen, 1999) and adopting Java as a program-
ming tool. This design has actually been coded using Java and each node in
the specialization branches has been made to work with the inherited methods.

Clearly, the framework is simplified in the sense that includes just what is
necessary to run the logic. In real-life situations, other attributes, needed to

15

Fig. 6. BO structure

describe the participating entities, and operations to update data and to elab-
orate and present the results would be included.

Also this framework has been presented as stand alone, which is not realistic.
In some cases this would be integrated with other frameworks for others ac-
tivities in a process at outlined in Section 2; in others it can be used without
integration, but it should be at least connected to the business data bases,
which contain data needed by the framework, instead of duplicating it.

We have developed working frameworks for several activities of the process in
Figure 1, which contain best practices that can be automated in applications
to support such activities. In particular we have frameworks for customer eval-
uation and order processing which includes automated customer classification
based on history and balance sheet information; sales forecasting and plan-
ning that includes sophisticated analytical tools, such us ARIMA methods
and neural nets; and inventory management that includes JIT and Reorder
Point cases, with probabilistic considerations for demand and lead times.

These frameworks are now being routinely used to develop specific applications
for real-life situations in their domains, as part of formal projects performed
by students at the University of Chile to help companies in this country to
innovate in their management and improve IT support to it (www.obarros.cl,
2003).

16

Fig. 7. BOF for Scheduling

5 Using Frameworks for Application Development

In using a framework of the type derived in Section 4 for developing an appli-
cation to support a real-life case within the frameworks domain, the following
procedure is used (Barros, 2002):

• Select relevant substructure of the framework applicable to the case.
• Specialize substructure to the characteristics of the case, adding data and

logic as needed.
• Design in detail for an available or selected technology and code.

We illustrate this procedure with the Scheduling framework. For this we use
a real-life case, which we have actually solved. It deals with the day to day
scheduling of telephone repair calls (tasks) for the largest telephone company
in Santiago, Chile. In attending such calls, hundreds of repairmen (facilities)
are available. Then the problem is to assign calls to each repairman and give
him a route to attend the calls. Objective is to minimize sum of all repairmen
travel time -equivalent to set-up time between tasks in the general formulation-

17

subject to the maximum work load that can be assigned to each of them. Ad-
ditionally, we would like that each repairmen has an assigned zone, where he
or she will get to be known by customers and develop a good relationship with
them; then each repairmen should hopefully be assigned calls in such zone, but
trying to keep the work load balanced among repairmen by eventually assign-
ing him -if he has time available- calls from other zones where the repairman
is overloaded.

This case corresponds to Schedule21 (with no lead time) in Figure 7. So the
relevant classes for such node in the structure are selected, which are shown
in Figure 8.

Fig. 8. Relevant Classes for repairmen scheduling

Specialization of Figure 8, according to previous case description, proceeds
with adding a logic class ScheduleCalls with methods SelectSet211, Get-
Task211 and ImproveSchedule211 ; a Repairmen data class with attribute
zone; a RepairCall data class with attribute location; and a class SetupGener-

18

ator, which calculates distances for all pair of locations of standing calls and
creates the data of the Setup class. In calculating such distances, a dummy
task (node), that represents the location from which all repairmen start, is
created. All this classes inherit from the selected structure as shown in Figure
9.

Fig. 9. Specialized Framework for repairmen scheduling

Then the business logic for SelectSet211 is obtained from class SelectSet21,
and the sets are sequenced with GetTask21(Φ, π), where all sequences start at
the dummy node defined above. We have added method ImproveSchedule211()
to balance the work load among repairmen as follows:

19

Method ImproveSchedule211(~n, m,~π)
hk = Time(π, |π|)− C, ∀k
σπ = 1

n2

∑n
k=1(hk − h̄k)

2

while(σπ > ξ)
{

π̂k = πk, ∀k
ν = arg mink{hk}
for i = 1 to |π̂ν |

κ = π̂νi

π̂ν = π̂ν\{π̂νi}
j = 1
while(j ≤ m ∧ j 6= ν)

fork = 1 to |π̂j|
π̂′

j = inser(π̂νi, π̂j, k)

Slack(π̂, π̂′
j)

if(hj ≤ 0 ∧ σπ̂ ≤ σπ)
π̂j = insert(π̂νi, π̂j, k)
σπ = σπ̂

}
πk = π̂k, ∀k

We have also coded the solution for this repairmen scheduling problem by
taking the Java code developed for the Scheduling framework and specializing
it according to the additions in this section. In a sequel paper we will report
the results obtained in the actual use of the solutions to solve the problem.

6 Conclusions and Future Work

We have shown in detail the workings of our approach for developing BOF
based on BPP. This included the application of the example framework to a
real life case of moderate complexity. The relevance of such framework and
the easiness of its use confirm our claim of its flexibility and reusability in
situations were non trivial business logic makes other approaches difficult to
implement. So it is apparently feasible to have the best of two worlds in the
support of complex business decisions: the advantages of pre built software -
with savings in developing costs- and the option to easily customize a solution
to the specific characteristics of a given case.

Our research is continuing in several directions. First, we are applying the
example framework of this paper to the actual solution of real life assign-
ment and routing problems in companies of the telecommunications industry
in Chile. Numerical results of such application will be presented in a sequel

20

paper. Second, such framework is being extended to include cases not included
in it; in particular, for situations with several facilities in any configuration.
Thirdly, frameworks for other activities in the value chain defined in this paper
-customer evaluation, sales predictions and production/supply management-
are being perfected. We are also working in the integration of these frame-
works; in particular we have developed an integrated framework -which covers
the whole value chain- with practices adapted to small and medium sized
companies. Finally, we are perfecting the way to deliver these frameworks for
practical use, by using technologies such as EJB and web services. A first test
of these technologies was done with the framework for small and medium sized
companies which was developed using EJB.

Akcnowledgements

Authors appreciate the help of Sebastián Ŕıos in the coding of the Scheduling
framework and its applications to the repairmen scheduling case.

References

Barros, O., 1995. Reingenieŕıa de Procesos de Negocios: Un Enfoque
Metodológico. Dolmen.

Barros, O., 2000. Rediseño de Procesos de Negocios mediante el uso de Pa-
trones. Dolmen.

Barros, O., 2002. Componentes de lógica del negocio desarrollados a partir de
patrones de procesos. Ingenieŕıa de Sistemas XVI (1), 3–20.

Beck, J., Prosser, P., Selensky, E., June 9-13, 2003. Vehicle routing and job
shop scheduling: What’s the difference? In: ICAPS 2003 (13th International
Conference on Automated Planning and Scheduling). Trento, Italy.

Bohrer, K., Johnson, V., Nilsson, A., Rubin, R., 1998. Business process com-
ponents for distributed object applications. Communications of the ACM
41 (6), 43–49.

Cline, M., Girou, M., 2000. Enduring business themes. Communications of the
ACM 43 (5), 101–106.

Conallen, J., 1999. Modeling web application architectures with UML. Com-
munications of the ACM 42 (10), 63–77.

D’Sousa, D., Nills, A., 1999. Objects Components and Frameworks with UML.
Addison-Wesley.

Fan, M., Stallaert, J., Whinston, A., 2000. The adoption and design method-
ologies of component-based enterprise systems. European Journal of Infor-
mation Systems (9), 25–35.

21

Fowler, M., 1996. Analysis Patterns: Reusable Objects Models. Addison-
Wesley.

Garey, M., Johnson, D., 1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman.

Garey, M., Johnson, D., Sethi, R., 1976. The complexity of flowshop and
jobshop scheduling. Math. Operation Research (1), 117–129.

Hieleber, R., Kelly, T., Ketterman, C., 1998. Best Practices. Simon & Schuster.
Johnson, S., 1954. Optimal two- and three-stage production schedules with

setup times included. Naval Research Logistics Quarterly (1), 61–68.
Porter, M., 1986. Competitive Strategy. Free Press.
Pree, W., 1994. Design Patterns for Object-Oriented Software Development.

ACM Press Books - Addison-Wesley.
Thangiah, S., Potvin, J., Sun, T., 1996. Heuristic approaches to vehicle routing

with backhauls and time windows. Internation Journal of Computers and
Operations Researc 23 (11), 1043–1057.

www.bwpccoe.org, 2003.
www.ebusinessforum.com, 2003.
www.obarros.cl, 2003.
www.siebel.com/bestpractices, 2003.

22

