

Business and Information Systems Design Based on
Process Patterns and Frameworks

Oscar H. Barros
Departament of Industrial Engineering

University of Chile
República 701, Santiago, Chile

obarros@dii.uchile.cl – www.obarros.cl

Business and Information Systems Design Based on
Process Patterns and Frameworks

 Abstract

We present a novel approach for encapsulating high level business knowledge and logic of a
given application domain in patterns and frameworks. These constructs can be applied to
improve a process for a given business in the domain and to develop an Information System
to support such process. The Business Process Patterns we have developed synthesize best
business practices found in hundreds of real projects of process redesign. From these patterns,
software Business Objects Frameworks, which encapsulate business logic to support their
processes, have been derived. This approach provides a very flexible way, based on reusable
components, to develop solutions and software for complex business decisions, which is a
complement to packaged products. The approach is exemplified by using a specific
application domain and applied to a real case in the domain. Our main contribution is that a
good characterization of the processes and associated decisions, by means of Business
Process Patterns, allows including complex generalized business decisions logic in Business
Objects Frameworks. Such logic is built upon the best current knowledge of analytical
methods, such as business intelligence, optimization and heuristics.

Key words: Business Processes, Business Patterns, Business Objects, Frameworks,
Information System Development

Business and Information Systems Design Based on
Process Patterns and Frameworks

1. Introduction

A common theme in the more recent IT and Business Process (BP) literature is the search for

approaches that allow formalizing domain knowledge into structures, patterns or frameworks,

which can be reused to facilitate process redesign and support systems development [2, 3, 7,

9, 15, 17, 27, 28, 29, 33]. The objective of these structures is to simplify and accelerate

process innovation and system design. The approaches differ in scope and business

knowledge content, so, in order to properly put our proposal into a context, we first attempt to

develop a classification scheme for them. The classification variables we chose are business

scope, which can vary from approaches that consider a single business activity to others that

cover a whole business, and degree of business knowledge content, which can go from little

to detailed content. In Table 1 we present our classification scheme and show the more

representative approaches within it, where we have also located our proposals. In briefly

reviewing such approaches, we group them into two classes: the ones in the two top rows of

Table 1, which concentrate on business and process structure and the ones in the last row,

which emphasize the definition of IT objects and their relationships.

For the business and process structure, the better known proposals for different domains are:

SCOR, which provides reference models for supply chain management processes that are

structured as a tree of typical sub-processes and component activities, together with business

practices, performance attributes and metrics for them [27]; eTOM, a BP architecture for

telecommunication companies, which is similar to SCOR, but oriented to the

telecommunication processes domain [29]; FEA, the Federal Enterprise Architecture, which is

a collection of interrelated reference models for the whole business of the US Government

[33]; MIT’s Process Handbook project, a collection of business practices that are structured

along BP of different domains [22, 23]; and Model Driven Architecture (MDA), which is an

approach, not a structure, to automatically built software by a series of transformations,

starting with a business model (Computation Independent Model: CIM) for which an OMG

Task Force is developing a BP metamodel [24].

 Business scope

Whole
business

Business
processes
(network of
activities)

Single
activity

 Little business Some business Detailed business Business
 knowledge knowledge knowledge knowledge
 content content content content

eTOM [29]
SCOR [27]
FEA [33]

 MDA [24] Business
Process
Patterns [5]
MIT’s Process
Handbook [23,24]
Business Object

Problem
frames [21]

Domain
theory [28]
e-Business
patterns [2]

Frameworks [6]
Fowler’s
patterns [17]
Archetype
patterns [3]

Table1. Classification scheme for patterns and frameworks

For the IT structure, more relevant proposals are: Fowler’s patterns [17], which are published

objects structures in domains such as accounting, billing and payroll; archetype patterns,

which are configurable UML models for a given business context, such as CRM and

inventory [3]; Domain Theory, which basically proposes reusable class models to automate

typical business activities, such as inventory, accounting and hiring [28]; e-Business patterns,

which are mostly hardware and software reusable structures for typical business in Internet

environments, such as User to Business (e.g. B2C), B2B and e-Marketplaces [20]; and

Problem Frames, which are abstract descriptions of recognizable classes of problems, such as

commanded behavior, information display and transformation [21]. As it is clear from Table

1, these IT structures, despite their technical orientation, consider some aspects of business

and process structure, since they are related to a particular BP or business context and contain

at least some business logic. For example, in the archetype pattern Inventory proposed by

Arlow and Neustadt [3], besides the common UML entity classes such as product type,

inventory entry and the like, there is a restock policy class that allows for some business logic

for item reordering.

In what follows we summarize our proposal for the two levels of structure defined above,

which has been developed independently of the approaches reviewed. It is based on the

following research methodology.

Starting with the knowledge derived in hundred of real life cases, where the redesign of many

different types of processes has been performed, we have developed Business Process

Patterns (BPP) that are valid for given domains. These BPP are generalized process models,

including activities, flows connecting them and business logic, of how a business in a given

domain should be run, according to best practices known [5]. The word pattern is used here

for structures that are very different than software patterns [3, 17, 20]. As we will explain in

more detail below, BPP can be built for very general domains, such as the value chain of any

business. These general BPP can then be specialized for specific domains; e.g., the process

pattern associated to the value chain in a hospital. This generates a tree of BPP from more

general at the top to more specific at the bottom. These patterns have been validated by

showing their applicability to many new cases, where redesigns have been performed based

on the structure and practices recommended by such patterns.

Given the BPP above, we have developed Business Object Frameworks (BOF) that are sets of

related generalized classes that define the IT support that can be given to the process in a

pattern. Here we adopt the definition of a framework used in software development as “a

body of code that implements the aspects that are common across an entire domain, and

exposes as extension points those elements of the domain that vary between one application

and another” [11]. In developing a framework of this type, associated to a BPP, a UML model

that defines the Business Objects (BO) involved is first derived. As show in Table 1, BOF can

be developed for a single activity or for a business process.

Our research diverges and advances with respect to the BP structures reviewed above in the

following aspects. The BPP we propose are better defined and detailed than SCOR, eTOM

and others reviewed, since they explicitly consider not only the generalized activities of a BP

but their interrelationships by means of well-defined information and physical flows; they

also include explicit business logic for all the activities. Of course, this logic will be more

detailed when the domain is smaller. For example, a business structure such as SCOR models

the supply chain with five basic processes: plan, source, make, deliver, return. These are then

decomposed into sub-processes and activities. As we will detail below, our approach also

allows to model the supply chain by detailing its processes and their component activities.

But, besides this, it adds explicit relationships that should exist among activities, at all levels

of detail, in order to have the required coordination, and also specifies the best practices, in

the form of business logic, that each of them should carry out in order to assure a given

performance. The BPP we propose have been developed during a period of more than ten

years, based on several hundreds of real cases of BP redesign, and tested with over one

hundred of new cases where the patterns have been used to generate new BP designs in very

different domains [5, 13, 18, 31].

Our frameworks differ from traditional ones in that they are mostly oriented to code business

logic, in particular complex business decision logic using analytics, according to current best

practices taken from OR/MS, Business Intelligence and Statistics. This makes them very

different from the IT structures above that only include simple business information

processing type of logic that, in many cases, duplicates logic included in packages such as

ERP. For example, as compared with the archetype pattern Inventory of Arlow and Neustadt

[3], mentioned above, our BOF include not only simple rules for inventory restock, but

classes that perform explicit logic on how to predict inventory demand – based on time series

or causal models – and to optimize inventory management with mathematical models. This

orientation has allowed that, in practical applications of BOF, their advanced flexible logic

has complemented or been more effective than the one contained in competitive ERP and

other types of packages.

We remark that our BOF are fully integrated with the BPP, while the other proposals for the

two-level structure above have been developed independently. To remedy this lack of

integration, such proposals have extended IT systems structure to include business aspects,

but this only allows considering a few aspects of the more important issues of process

relationships. We will illustrate this point when we present our BOF.

In the following sections we present the results of our research and its practical application.

Due to the space available we can only give the flavour of how our BPP and BOF have been

developed and we emphasize the way in which they can be specialized to specific cases to

perform redesign and develop Information Systems.

We present the BPP and report on their use in Section 2, and show how to specify the

business logic for such patterns in Section 3.

We will show how to derive BOF from BPP and their use in Section 4.

Finally, in Section 5, we present a real application of our BPP and BOF and, in Section 6,

conclusions.

2. Business Process Patterns

Business Process Patterns are models of how a business in a given domain should be run,

according to the best practices known [5]. Hence they are based on empirical knowledge of

how activities of a process in the best companies of a given domain are performed. Such

knowledge can be obtained from the best practices literature, reported experiences and direct

observation of firms [14, 16, 19, 26, 30]. Our patterns have benefited from the knowledge

derived by hundred of cases in which processes of many different companies have been

modeled, analyzed and redesigned and previous experience with the modeling of Information

Systems [4].

We have found that beyond the best practices for a given domain, usually expressed in the

form of specific business logic, BPP share a common structure of activities and flows. Thus,

products or services provision processes – such as manufactured goods, health, justice and

financial services, etc – share such a common structure. A first level of detail of such a

process structure or BPP is shown in Figure 1.

Figure 1. Business Process Pattern for products or services provision (Macro1)

This structure is a process model of what is commonly known as the value chain, which is a BPP we

call Macro1. It includes the sub-processes of Customer relationship management, Supplier

relationship management, Production and delivery management, Production and delivery of

products or services and State status. It also shows the necessary relationships among such sub-

processes by means of information and physical flows, such as supplies and products [5]. Now,

following the IDEF0 modeling scheme, we can detail such a pattern by partitioning each of its sub-

processes, as it is shown in Figure 2(a) for Customer relationship management. Our BPP do not

depend on IDEF0, so other modeling approaches can be used, such as the one proposed in Dalai et

al [12] or any implementation of the OMG business process modeling language [8].

If we want to give further detail of a BPP, we have to be more specific about the domain, so that we

can define decompositions of sub-processes into generic activities, their business logic and the flows

that connect them with precision. In order to show how to do this, we synthesize our experience of

many real cases in the following domain definition for the generic activity Marketing and customer

analysis of Figure 2(a). We assume situations where businesses sell physical products or services to

a) Detail of Customer relationship management

b) Detail of Marketing and customer analysis

c) Detail of Customer and sales behavior analysis

Figura 2. Decomposition of Customer relationship management

a large number of customers; specifically we include cases such as retail using any channel and

direct sales by manufacturing or service firms.

Under previous assumptions, we decompose the said activity in Figure 2(b), where we will

concentrate on Customer and sales behavior analysis. For such an activity in this specific

domain, which is further decomposed in Figure 2(c), we can be very precise about a best

practice business logic. Business logic, which guides the action in an activity, determines the

exact information flows that are required and that are produced, including the updating of the

process changes in State Status of Figure 1 and the state information this generates, shown

below each activity, which is necessary for its performance. We will show, in the next

section, how to specify such logic.

The pattern includes decomposition for all the activities in Figure 1. To further illustrate such

task, we decompose Production and delivery management, considering the same domain

previously defined. This is shown in Figure 3, where we have concentrated on the activity of

Scheduling, for which we will provide generalized business logic in the next section. Details

for the other activities of this BPP are given in Barros [5].

Now a key and unique feature of our approach is to make explicit how the different activities

of a pattern interact to produce coordinated actions. This is done by means of the information

flows that activities interchange and the business logic that each of them executes to process

such flows. For example, in the case of applying the previous pattern to production to stock,

such type of relationship is the one between Forecast model development of Figure 2c, Sales

Planning of Figure 2b, Scheduling of Figure 3b and Supplier relationship management of

Figure 1. Clearly, forecast models produced by the first activity will be used to generate a

sales forecast and sales plan, in the second, which will then trigger production lots that will be

sequenced by Scheduling. The production schedule will, in turn, be used by the last activity to

generate materials orders to suppliers. We present this coordination chain as a sub pattern in

Figure 4, where we show a “horizontal” process view mixing activities from several “vertical”

hierarchical decomposition views, including the explicit role of State status in terms of

updating and information provided*. In such chain each activity executes a business logic that

* This view is given to facilitate the understanding of the coordination issues; experienced modelers can gather
the same information from the “vertical” views in Figures 1, 2 and 3. Of course, there are many other sub
patterns that can be derived from such views.

a) Detail of Production & delivery management

b) Detail of Production planning a control

Figure 3. Decomposition of Production and delivery management

is designed to generate the required performance: to produce what is needed according to the

forecast, assuring the required materials and minimizing production costs. Part of such logic

can be specialized from the one we will give in the next section.

Figure 4. Coordination sub pattern

We have illustrated the concept of BPP with just one process pattern for a very general

domain. Other BPP have been developed for particular cases or specializations of the general

domain, such as situations in which there is not production and sale of products and services

is made from stock bought from others, e.g. distribution companies or telephone companies,

manufacturers that sells their own products, and hospital or financial services [5, 32]. Also,

BPP have been developed for other types of processes, complementary to the value chain:

Management of resources –human, financial and fixed assets- (Macro4), Development of new

products (Macro3) and Business planning (Macro2) [5]. These types of BPP and their

specializations conform, as advanced above, a tree of BPP from which we can select the

closest to a situation one wants to redesign. A partial version of such tree is given in Figure 5,

where the root General Architecture refers to the fact that all the BPP are built starting with a

generic structure, well founded from a theoretical and empirical point of view, which we do

not detail here [5]. We have only given a very small sample of the BPP we have developed

and of the details that each of them includes, because of space limitations.

3. Business logic specification

Our aim is to give generalized business logic for the activities of a BPP in a specific domain.

Consider the activity of Forecast model development of Figure 1(c). Under previous domain

assumptions, a forecast based on sales history is possible. We also assume that, previously, a

datamart with a relevant and clean history has been set up in the activity Customer and sales

data base preparation. Then, an analyst that performs former activity will have a system

support with a business logic that allows him to do the following:

i. For all current forecast models for sales items, made available through Clean analysis

data and current models, to calculate forecast error by comparing a selected history of

forecasts and actual sales.

ii. For selected sales items and forecast models -e.g. exponential smoothing, Box-

Jenkins, neural networks and supper vector machines [1, 2, 5], to fit historical sales

data to models, proposing parameters and providing estimated forecast error.

iii. To update models selected by analyst for routine use in forecasting in Sales planning

of Figure 1(b).

This a simplification of real cases we have performed where the logic can be more complex,

involving model identification and training with more analyst responsibility than the one

outlined.

In order to give a flavour of the business logic included in the system support above, we

outline a portion of the logic corresponding to the fitting and estimation of a selected model to

historical data. This logic, which is shown in Table 2, corresponds to a simplified version of

the identification and estimation of a Box-Jenkins model. The logic is mostly composed of

statistical calculations, with some analyst intervention for the more qualitative aspects. Hence

it leaves little room for introducing causal business factors and decisions, such as economic

environment, promotions and pricing policies. However, other methods, such as neural

networks and support vector machines [25], allow to consider such factors, in which case

Figure 5. Tree of Business Process Patterns

General
Architecture

Business
Planning BPPMacro 3

Distribution
domain

Credit
domain

Manufacturing
domain

Hospital
domain

Human
resource
management
domain

Financial
resource
management
domain

Fixed assets
management
domain

Macro 1ch

Bank loans
domain

Macro 1mo

Made to order
manufactoring
domain

Macro 1he

Hospital
emergencies
domain

Value Chain
BPP

New product
Development
BPP

Resource
Management
BPP

Macro 1 Macro 2 Macro 4

Macro 4faMacro 4hr Macro 4frMacro 1hMacro 1mMacro 1cMacro 1vds

Table 2. Business logic for Box-Jenkins identification and estimation

business logic would explicitly consider the interaction between commercial decisions and

forecast [1]. These possibilities are considered in the full version of our BPP.

//Business logic outline for Box-Jenkins model identification and estimation

//Previously, several tests for determining the suitability of Box- Jenkins against other
methods have been performed; e.g. presence of tendency, seasonality and white noise
and consideration of the number of observations

//Model identification

Calculate autocorrelations and partial autocorrelation functions
Test for determining if series is stationary
//Autocorrelation decay is evaluated
If series is not stationary
 Do the series difference until it is stationary
 //Times series is differenced corresponds to parameter d
Endif

//Series is stationary
Establish behavior of autocorrelation and partial autocorrelation functions: decay,
oscillation, truncation, large particular values, etc.
Identify type of model: MA(q), AR(p), ARMA(p,q) or ARIMA(p,q,d)
//This is based on functions behavior
Show the analyst autocorrelation and partial autocorrelations graphics and the
proposed model
Accept the analyst approval of proposed model or own values for parameters p and q

//Models estimation and testing

Estimate constants for model
Perform model goodness test (Box-Pierce)
Test model by using new historical data to forecast and calculate forecast error
Show analyst estimated model and tests
If the analyst accepts the model or decides that no model can be fitted
 Update the model
Else analyst establishes new analyses to be made
//This may mean going back to the model identification or selecting a model different
from Box-Jenkins.

The key for developing generalized business logic, valid for all particular cases in a domain,

is to structure the decisions in the domain in cases, according to certain variables or

parameters that determine the relevant algorithm or heuristic for each case. If we apply this

idea to the forecasting activity considering, in a simplified way, the variables of sales stability

and marketing style as determining the right type of forecasting model, we show in Table 3

the models that apply for combinations of such variables (cases). This determines the logic to

forecast sales in each case. Then a logic as in Table 2 can be specified for each case. The

same idea as above can be applied to the Scheduling activity. We consider the general

situation where a list of waiting tasks, which can be products to be manufactured or services

to be performed, is to be assigned to servers – machines, people, trucks, etc – for their

completion. In this case structure depends on the variables in Table 4, where the relevant

heuristics are also shown.

 NOT
 STABLE

M
AR

K
ET

IN
G

PA
SS

IV
E

Exponential
smoothing

 Box- Jenkins

AC
TI

VE

Exponential

smoothing and Box-
Jenkins

Box-Jenkins and
neural networks

STABLE

DEMAND

Table 3. Appropriate forecasting models for various cases

4.

Greedy heuristic
(shortest task

first)

(Series servers)

Greedy
heuristic

Greedy heuristic
with time
windows

NUMBER OF SERVERS

1 2 >2

(Parallel servers)

Assignment of tasks to servers plus
greedy heuristic with setup time for
each server

(Series servers)
Grouping of servers plus greedy

heuristic with time windows

Greedy heuristic with
set up times (smallest
set up plus processing
time task first)

Greedy heuristics
with set up times

and time windows

(Parallel servers)

Assignment of tasks to servers plus
greedy heuristic with setup times and
time windows for each server

(Series servers)

Grouping of servers
plus greedy heuristic

 N
O

 C
O

M
PL

ET
IO

N

D
A

TE
S

R
EQ

U
IR

ED

 C

O
M

PL
ET

IO
N

.D
A

TE
S

R
EQ

U
IR

ED

N

O
 C

O
M

PL
ET

IO
N

D

A
TE

S
R

EQ
U

IR
ED

 C
O

M
PL

ET
IO

N

 D
A

TE
S

R
EQ

U
IR

ED

N
O

 S
ET

 U
P

TI
M

E
B

ET
W

EE
N

 T
A

SK
S

SI
G

N
IF

IC
A

TI
V

E
SE

T
U

P
TI

M
E

Set up Time: Time needed between execution of any two tasks; e.g. change of tooling in manufacturing,
travel time between locations in telephone repair and cleaning of surgical facilities between medical
operations.

Server: Facilities that execute tasks; e.g. machines, repairmen and surgical facilities

Table 4. Appropriate scheduling heuristics for various cases

In order to show the type of logic for Scheduling, we give, in Table 5, the general logic for all

the cases of Table 4 and one example of specific logic for the case with set up times, no

completion or lead time and one server. Though they may look mathematically complex, they

are a formalization of simple decision heuristics: for the general case, to first assign tasks to

servers using an appropriate criteria and then sequence them in each of the servers in the best

possible order; and for the particular case, choose a sequence by selecting always the task

with the smallest remaining set up plus processing time (greedy heuristic). The algorithms for

the rest of the cases and their justification are given in Barros and Varas [6].

4. From Business Process Patterns to Frameworks

From the BPP support and business logic of the previous sections, we can map BOF with BO

that incorporate the knowledge about the solution of relevant problems in the given domain.

These BOF have as a purpose to provide generalized solutions to the problems, which can be

used to develop an object-based software application for any particular real-life problem in

the domain.

The mapping from BPP and business logic to a BOF is as follows:

i) The structure of the BPP system support and the business logic of the domain give a

first cut definition of the BO classes that encapsulate the algorithms or heuristics that

solve the problem for different cases in the domain.

ii) The structure of the BO can then be modeled using UML class diagrams, and

operations or methods for classes defined according to business logic.

iii) The data needed to execute operations can then be derived from the data included in

the business logic.

iv) The data can be structured into data classes that interact with BO in (ii). A complete

class diagram with BO and databases can then be modeled using UML.

We follow the steps above for the activity Forecast model development in Figure 2c.

Heuristic Schedule (mn ,°)

mjj ,...,1,0 ==π
°= nn

SelectSet (Φ,,nm)
GetTask (π,Φ)
If ()1>m then
 ImproveSchedule (π)

GetTask2 ()π,Φ

{ { jkijkji PSq += minminarg ׀ } }Φ∈ji,
,(qinsert=π Ø, 0)

Φ=Φ \ { }q
(≠Φwhile Ø)

{
{ jkqjkj PSq += minarg Φ∈j{ ׀

insert=π (,,πq π׀ (׀
Φ=Φ \ { }q

}

where

• Routine SelectSet() selects a subset of tasks for every facility, where the result is given in the mtuple
()mΦΦΦ ,...,2,1 of subsets of Φ .

• Routine GetTask() selects a sequence jπ for the set of tasks jΦ of each facility mjj ≤≤1 ; its
implementation will depend on the specific case.

• Routine ImproveSchedule() improves the current schedule π for all facilities.
• insert)(ij ,,π returs a new schedule with element j inserted in schedule π just after place i
• m is the number of different types of facilities or machines.
• n is the number of distinct tasks types.
• ikP is the processing time of task i at facility k
• ijkS is the set up time if task type i is processed immediately before task type j at facility k .

 Table 5. Example of business logic for Scheduling

.

The structure of the system support in 3i,ii,iii and the business logic in Tables 3 and 4 lead us

directly in to the BO structure of Figure 6, where we also show the data classes and the

operations for each class. We use common OO conventions for frameworks and adopt some

of the ideas in Conallen for web applications [10] to organize classes. The structure is not

complete, since it should be integrated with all the components that support the activities of

Customer and Sales database preparation and Sales planning of Figure 2, where the datamart

is created, in the first, and forecast models are actually run, in the second, to produce forecasts

that are needed for generating sales plans. We have avoided such integration to simplify

presentation.

Figure 6 Framework for forecasting model development

The BO of the framework is structured according to the type of cases in the domain, defined

in Table 3. Then the analysis can be tailored and made more specific for each

particular case. In Figure 7 we show, in a simplified way, how this is done in our forecasting

framework. The key is to structure the Model analyzer BO in component cases, which provide

different solutions according to the characteristics of the business problem that the framework

intends to solve. In Figure 7 such structure is organized according to the variables of stability

Requests processor

Run error calculation()
Run model estimation and testing()
Run model estimation and testing with analyst parameters()
Run model update()
Run model analysis()

<<boundary>>

Error calculator

Calculate error()

<<control>>

Results processor
Show forecast error results()
Show model analysis results()
Show estimation and testing results()

<<boundary>>

Model analyzer

Fit model and calculate parameters()
Estimate constants for model and test()

<<control>>

Forecast
period
forecast model
estimated forecast error
actual forecast error
Update forecast()

<<entity>>
Model parameters and constants
parameter or constant type
parameter or constant value

Update parameter or constant ()

<<entity>>

Sales item
item number
model type
mean error
Update model()

<<entity>>

0..*
1

0..*
1

0..*

1

0..*

1

DB Interface

Get data()

<<interface>>

and marketing type previously mentioned. Then, for each case in the structure, an appropriate

logic is provided, as in Table 2, based on the experience obtained from the results generated

with the use of the most important analysis methods [1, 25]. Hence, the main feature of the

framework is to offer solutions for several different cases that are part of the domain, so that

an analyst can choose the one that fits his particular case.

Figure 7. Structure of Model Analyzer

In the same way, a framework for Scheduling can be developed, which is shown in Figure 8.

This framework is based on the idea that all the problems in the domain share a common

structure (BOF) with several different cases, defined in terms of number of processors and

configurations (series, parallel and network), as in Table 4, which can be selectively used

according to the characteristics of the problem al hand.

An important characteristic of these frameworks is to offer the possibility of having

incrementally more complex logic for the cases in a problem, defined as outlined above.

Thus, for example, for the Scheduling activity, the structure of Figure 8, which is a

specialization one, shows that there are methods (HeuristicSchedule, SelectSet, GetTask, and

ImproveSchedule), which are used by all specialization classes. Then the three branches

starting at the class Scheduler, define three alternative cases: one with lead time, another with

Analyzer-stable,
passive marketing

Fit ES()
Estimate ES()

Analyzer

Fit model()
Estimate model()

<<abstract>>

Analyzer-dynamic,
passive marketing

Fit BJ()
Estimate BJ()

Analizer-stable, active
marketing

Fit ES and BJ()
Estimate ES and BJ()

Analyzer-dynamic,
active marketing

Fit BJ and NN()
Estimate BJ and NN()

ES: Exponential Smoothing
BJ: Box-Jenkins
NN: Neural Networks

set up time, and one with both. Each branch has a method that is a specialization of GetTask

(GetTask1, GetTask2 and GetTask3), which is inherited by cases immediately below in such

branch. The same is true for other branches below this one. All these methods are specified by

means of a business logic of the type given in Table 5. Now each branch has classes

increasingly more complex; e.g., the one at the left of Figure 8, corresponding to the case

with led time but no set up time, has Scheduler1 corresponding to the case with one facility,

Scheduler11, with two facilities and Scheduler111, with three facilities in series. Each class

inherits methods from classes above in the branch and uses them in their own methods.

This means that more complex cases are built based on methods of simpler ones. Thus when

using the framework to develop an application for a particular case, just one branch and some

of the classes of the branch will be selected: just the ones appropriate for the particular

case at hand. The framework can be extended by adding more specialization classes at the last

level selected of the branch. We will illustrate this idea with a real case in the next section.

Figure 8. Framework for Scheduling

Hence, in the application of a BOF to a particular situation, the user of the framework will

select the minimum level of complexity that solves his problem Thus, for example, a

developer will select, in Figure 8, just the class Scheduler 1, because he has a case with lead

time, no set up time and just one facility.

 The implementation of this feature, which allows for the selection and use of incrementally

more complex solutions for a problem, is based on OO inheritance. We have coded our

framework based on this feature and determined that is very simple to select and combine the

options that they offer and to specialize them to particular applications. This idea of selection

from a given framework is related to the notion of configuration of Arlow and Neustadt [3],

where formal models have been developed to define such general structures and automatically

generate valid particular cases. Our approach depends more on analyst specialization.

 The frameworks we have used as examples have been presented as stand alone, which

is not realistic. In some cases they would be integrated with frameworks for others activities

in a process, in order to develop an Information Systems that support a coordination chain for

such activities, as outlined in Section 2; in others cases, they can be used without integration,

but they should be, at least, be connected with other applications though business DB. For

example, the forecasting framework supports Forecast model development of Figure 4 and the

scheduling one, the activity Scheduling. Clearly an integrated Information System support for

the whole coordination sub pattern of such figure should include these two pattern plus the

ones to support Sales Planning and Supplier Relationship Management, all of them connected

by means of classes in these patterns; such as the ones necessary to support Sales Planning to

generate, for a given forecast stored in the framework of Figure 6, a sales plan and then

convert it into production requirements (lots) to be stored in Task of Figure 8.

 We have developed working frameworks for several activities of the process in Figure

1, which contain the best practices that can be automated in applications to support such

activities. In particular we have frameworks for customer evaluation and order processing

which includes automated customer classification based on history and balance sheet

information; the frameworks we have presented in a very simplified way in this paper;

inventory management that includes JIT and Reorder Point cases, with probability

considerations for demand and lead times; and production planning with mathematical

models.

5. Using Frameworks for Information System Development

In using a framework of the type derived in the previous section for developing an

Information System to support a process in a real-life case, within the frameworks domain,

the following procedure is used [6]:

i) Select the relevant substructure of the framework applicable to the case.

ii) Specialize the substructure to the characteristics of the case, adding data and logic as

needed.

iii) Design in detail for an available or selected technology and code.

We illustrate this procedure with the Scheduling framework. For this we use a real-life case,

which we have actually solved. It deals with the process of attending telephone repair calls

and the day to day scheduling of such calls (tasks) for the largest telephone company in

Santiago, Chile. In attending calls, hundreds of repairmen (facilities) are available. Then the

problem is to assign calls to each repairman and give him a route to attend the calls. The

objective is to minimize the sum of all repairmen travel and repair time, equivalent to set up

time between tasks plus processing time in the general formulation, subject to the maximum

work load that can be assigned to each of them. Additionally, we would like that each

repairmen has an assigned zone, where he will get to be known by customers and develop a

good relationship with them; then each repairmen should hopefully be assigned calls in such

zone, but trying to keep the work load balanced among repairmen by eventually assigning

him, if he has time available, calls from other zones where the repairman is overloaded.

This case corresponds to Schedule21 (with set up time but no lead time) in Figure 8. So the

relevant classes for such node in the structure are selected, which are shown in Figure 9.

Figure 9. Relevant classes for repairmen scheduling

The specialization of Figure 10, according to previous case description, proceeds with adding

a class ScheduleCalls with methods SelectSet211, GetTask211 and ImproveSchedule211; a

Repairmen data class with attribute zone; a RepairCall data class with attribute location; and a

class SetupGenerator, which calculates distances for all pair of locations of standing calls and

creates the data of the Setup class. In calculating such distances, a dummy task (node) that

represents the location from which all repairmen start, is created. All these classes inherit

from the selected structure as shown in Figure 10.

Figure 10. Specialized framework for repairmen scheduling

Then the business logic for SelectSet211 is obtained from class SelectSet21, and the sets are

sequenced with GetTask21(Φ,π), where all sequences start at the dummy node defined above.

We have added a method ImproveSchedule211 to balance the work load among repairmen by

reassigning calls from overload zones to the nearest one with available time.

The coding and actual use of the framework in solving the repairmen scheduling problem has

confirmed the benefits we expected in its practical application. The coding effort of the

framework was about 2000 lines of Java code. Now in terms of its use, it is clear that the

framework offers a pre built solution that allows the developer to select, among several

possibilities, the functionality that solves his problem and specialize it, if it does not have a

complete fit with it. So it requires much less work than an ad hoc solution and does not

require the ability to develop complex algorithms. On the other hand, a packaged solution has

the same advantages of the framework, but it is not customizable by mean of specialization;

so if it does not fit the problem, it use is not feasible. In our case we did not find a package

that was able to balance load among zones. For specializing the code of the framework in

Figure 9, we wrote about 500 lines of code in Java.

6. Conclusions and Future Work.

We have shown in detail the workings of our approach for developing BOF based on BPP that

contain more business logic than other known patterns and frameworks. This included the

presentation of realistic example frameworks. In particular we have presented a working

procedure that can incorporate domain knowledge in providing generalized solutions that are

able to be reused and specialized for integrated business process and Information Systems

design in a given application domain. This also provides an approach to solve in a generalized

and rigorous, business-design-based way, the requirements problem in system development

for situations where complex business logic is involved.

So it is apparently feasible to have the best of two worlds in the support of complex business

decisions: the advantages of pre-built software based on frameworks, with savings in

developing costs, and also the option to easily customize a solution according to the specific

characteristics of a given case.

Our research is continuing in several directions. Firstly, we have successfully applied the

Scheduling framework of this paper to the actual assignment and routing of installation

requests in a cable TV/Internet provider. Secondly, the forecasting framework is being

extended to include cases not included in it, in particular for situations with complex variables

such as fashion, using techniques such as neural networks and vector support machines [25].

Thirdly, frameworks for other activities in the value chain defined in this paper are being

developed, such as supply chain management, production and operations planning, and

logistics. Also we are working on the integration of these frameworks. In particular we are

developing an integrated BPP and framework, that covers the whole value chain, with

practices adapted to small and medium sized companies, and another one specialized to firms

that develop engineering, construction, software and other types of projects. Finally, we are

improving the way to package these frameworks to facilitate their practical use. In particular

we are evaluating technologies such as EJB and web services as tools for this purpose.

REFERENCES

1. L. Aburto, R. Weber, Demand forecast in a supermarket using a
hybrid intelligent system, in: A. Abraham et al. (Eds.), Design and application
of hybrid intelligent systems, IOS Press, Amsterdam, Berlin, 2003, pp. 1076-
1083.

2. J. Adams, S. Koushik, G. Vasudeva, G. Galambos, Patterns for e-business: A

Strategy for Reuse, IBM Press, 2001.

3. J. Arlow, I. Neustadt, Enterprise Patterns and MDA, Addison Wesley, 2003.

4. O. Barros, Modeling and evaluation of alternatives in Information Systems,
Information Systems 16 (5) (1991) 537-558.

5. O. Barros, Rediseño de Procesos de Negocios mediante el Uso de Patrones,

Dolmen, 2000.

6. O. Barros, S. Varas, Frameworks derived from business process patterns.
Technical Report 56, 2004, Industrial Engineering Department, University of
Chile . Available at www.obarros.cl.

7. K. Bohrer, V. Johnson, A. Nilsson, R. Rubin, Business process components for
distributed object applications. Communications of the ACM 41 (6)(1998) 43-49.

8. Business Process Management Initiative, Business Process Modeling

Language, http://www.bpmi.org/bpml-spec.htm

9. M. Cline, M. Girou, Enduring business themes. Communications of the ACM
43 (5)(2000) 101-106.

10. J. Conallen, Modeling web application architectures with UML.

Communications of the ACM 42 (10)(1999) 63-77.

11. S. Cook, Domain–specific modeling and Model Driven Architecture, MDA
Journal, BPTrends, Janary (2004). Available www.bptrends.com.

12. N.P.Dalai, M. Kamath, W.J. Kolarik, S. Sivaraman, Toward an Integrated

Framework for Modeling Enterprise Processes, Communications of the ACM,
Vol. 47 Nº 3 , (2004) pp 83-87.

13. A. Díaz, Introducción de tecnología de inteligencia de negocios al proceso de

ventas del área residencial de Telefónica CTC Chile, Professional Thesis,
Industrial Engineering Department, University of Chile. 2002. Available at
www.obarros.cl.

14. DMOS, Benchmarking and Best Practices,

 http://dmoz.org/Business/Management/Benchmarking_and_Best_Practices/

15. D. F. D´Sousa, A. C. Wills, Objects Components and Frameworks with UML.

Addison-Wesley, 1999.

16. DTI, Best Practice, http://www.dti.gov.uk/bestpractice/

17. M. Fowler, Analysis Patterns: Reusable Objects Models. Addison-Wesley, 1996.

18. A. González, Diseño del procedimiento de administración de causas para el

Ministerio Público, Professional Thesis, Industrial Engineering Department,
University of Chile. 2001. Available at www.obarros.cl.

19. R. Hieleber, T. B. Kelly, Ch. Ketterman, Best Practices, Simon & Schuster, 1998.

20. IBM, Patterns for e-business,

 http://www-128.ibm.com/developerworks/patterns/

21. M. Jackson, Problem Frames, ACM Press Books, Addison-Wesley, 2001

22. T. W. Malone, K. Crowston, G. A. Herman, Organizing Business Knowledge:

The MIT Process Handbook, MIT Press, 2003.

23. MIT, The MIT Process Handbook Project, http://ccs.mit.edu/ph/

24. OMG, OMG Model Driven Architecture, www.omg.org/mda

25. D. Pyle, Business Modeling and Date Mining, Morgan Kaufmann Publishers, 2003.

26. Siebel, Best practices, www.siebel.com/bestpractices

27. Supply Chain Council, Supply-Chain Operations Reference Model,
http://www.supply-chain.org/page.ww?name=Home§ion=root

28. A. Sutcliffe, The Domain Theory: Patterns for Knowledge and Software Reuse,

Ealrbaum Assoc., 2002

29. Telemanagement Forum, Enhanced Telecommunication Map (eTOM),
http://www.telemanagementforum.com/

30. The Economist, Economist Intelligence Unit, www.ebusinessforum.com

31. R. Vallette, Apoyo tecnológico a la administración de solicitudes de pabellón a

partir de la arquitectura de un e-business, Professional Thesis, Industrial Engineering
Department, University of Chile, 2002. Available at www.obarros.cl.

32. P. Vitharama, H. Zadei, Jain, Design, retrieval , and assembly in component-

based software development, Communications of the ACM 42(11)(2003) 97-102.

33. White House E-Gov, Federal Enterprise Architecture,
http://www.whitehouse.gov/omb/egov/a-1-fea.html

